
© 2005 Nature Publishing Group 

 

*Department of Cellular and 
Molecular Medicine and 
Ottawa Institute of Systems 
Biology, University 
of Ottawa, 451 Smyth Road, 
Ottawa, Ontario K1H8M5, 
Canada.
‡Department of 
Pharmacology, University 
of North Carolina, Chapel 
Hill, North Carolina 27599, 
USA.
§Department of Biomedical 
Engineering and Center for 
BioDynamics, Boston 
University, 44 Cummington 
Street, Boston, 
Massachusetts 02215, USA. 
Correspondence to M.K.
e-mail: 
mkaern@uottawa.ca
Published online 10 May 2005
doi:10.1038/nrg1615

Stochasticity in gene expression arises from fluctuations 
in transcription and translation, despite constant envi-
ronmental conditions. This phenomenon has attracted 
interest for many years because of its implications for 
cellular regulation and non-genetic individuality1–7. 
Recent advances in techniques for single-cell analysis 
have provided an impetus for novel experimental and 
theoretical investigations that, in turn, have led to 
fundamental new insights in this field. As a result, a 
coherent picture of stochasticity in prokaryotic and 
eukaryotic gene expression is beginning to emerge.

Here, we discuss the theoretical mechanisms that are 
thought to cause fluctuations in the expression levels of 
single genes and the experiments that have been used 
to validate these ideas. We also describe experimental 
studies of stochastic effects in gene-regulatory net-
works. Special emphasis is given to stochastic mecha-
nisms that can lead to the emergence of phenotypically 
distinct subgroups within ISOGENIC cell populations. We 
conclude by discussing the possibility that stochasticity 
in gene expression is an evolvable trait, and the grow-
ing evidence for a role of stochasticity in development 
and disease.

Origins and consequences of stochasticity
Modelling the expression of a single gene. FIGURE 1 
illustrates some of the main steps in gene expression. 

The control of transcription is mediated by factors that 
bind at upstream promoter elements or influence the 
binding of other molecules to cis-regulatory elements 
within or near the promoter. Because such binding 
events are the result of random encounters between 
molecules, some of which are present in small num-
bers, the biochemical processes that regulate transcrip-
tion initiation are inherently stochastic. In addition, 
the multi-step processes that lead to the synthesis 
and degradation of mRNA and protein molecules are 
subject to similar molecular-level noise. The model in 
FIG. 1 is simple in comparison with the true complexity 
of gene expression8. However, it has provided a good 
theoretical framework for understanding the effects of 
stochasticity on prokaryotic and eukaryotic gene expres-
sion9–49, and underlies the theoretical investigations 
used to design and interpret many of the experiments 
discussed in this review. 

The origins and consequences of molecular-level 
noise on the expression of a single gene can be dem-
onstrated by comparing the intracellular protein con-
centrations obtained from stochastic and deterministic 
simulations of the model in FIG. 1. Deterministic simu-
lations typically use rate equations BOX 1 — which 
do not take stochastic processes into account — to 
describe changes in mRNA and protein abundances. 
By contrast, stochastic simulations typically consider 
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Genetically identical. Individual 
cells within an isogenic 
population are typically the 
progeny of a single ancestor.    
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the random formation and decay of single molecules 
and multi-component complexes explicitly. As a result, 
the deterministic approach cannot capture the poten-
tially significant effects of factors that cause stochasticity 
in gene expression. 

In certain circumstances, deterministic simula-
tions of the model in FIG. 1 predict intracellular protein 
concentrations that are similar to those predicted by 
stochastic simulations. The conditions that need to 
be satisfied for the predictions of the two approaches 
to be similar are large system size (high numbers of 
expressed mRNA and proteins, and large cell vol-
umes) and fast promoter kinetics (BOX 1; see below). 

These conditions are met in the example illustrated in 
FIG. 2a, in which the protein concentration (the overall 
measure of gene expression) predicted by a stochastic 
simulation fluctuates with very low amplitude around 
the average level predicted by a deterministic simula-
tion. Correspondingly, the relative deviation from the 
average, measured by the ratio η of the standard 
deviation σ to the mean N, is quite small. This ratio η 
(or, alternatively, η2) is typically referred to as the 
coefficient of variation, or the noise.

When the conditions required for good agreement 
between deterministic and stochastic simulations are 
not fulfilled, the effects of molecular-level noise can 

Figure 1 | A model of the expression of a single gene. Each step represents several biochemical reactions, which are 
associated with mRNA and protein production, transitions between promoter states and the decay of mRNA and protein. kon, 
koff, sA, sR, sP, δM and δP are the rate constants associated with these steps, as indicated. These reactions involve binding and 
dissociation events that occur at random at the molecular level. This is ignored in deterministic models of gene expression, 
which typically describe the different steps in terms of reaction rates. Stochastic models generally describe each step as a 
single random event, with a reaction time that shows an exponential distribution. All steps are assumed to obey first-order 
kinetics. The ratios sP /δM (the average number of proteins produced per mRNA) and sA/koff (the average number of mRNA 
produced between successive promoter activation and inactivation events) are referred to as the translational and 
transcriptional efficiency, respectively. 

Box 1 | Deterministic rate equations and stochastic models of gene expression

Rate equations 
One mathematical framework for describing gene expression uses deterministic rate equations to calculate the 
concentrations of mRNA [M] and proteins [P]. For the model in FIG. 1, with a single gene copy, these equations are:

 (1)

 (2)

where V is the cell volume; the terms δM[M] and δP[P] are the degradation rates for mRNA and proteins, 
respectively; and the term sP[M] is the rate of protein synthesis. The rate constants kon and koff govern transitions 
between the active and repressed states of the promoter. Therefore, the ratios kon/(koff + kon) and koff /(kon + koff) in 
equation 1 are the fraction of time that the gene spends in the active and repressed states, respectively (that is, the 
promoter is assumed to be in chemical equilibrium). Consequently, mRNA production occurs at a constant rate, which 
is given by the weighted average of the activated synthesis (sA) and repressed synthesis (sR) mRNA synthesis rates.

The macroscopic limit and promoter kinetics
The above equations represent a valid approximation of the stochastic description when two limits are satisfied 
(FIG. 2a). The first is the macroscopic limit in which sR, sA and V become large, with the ratios sR/V and sA/V remaining 
constant. The second is the limit of fast chemical kinetics in which kon and koff become large, with their ratio 
remaining constant. Note that these limits do not alter equations 1 and 2. In FIG. 2b, the limit of fast chemical kinetics 
is satisfied, whereas fluctuations that are due to small system size are large (see main text). The reverse is true in 
FIGS 3a,b, where the number of expressed molecules is high, but the transitions between promoter states occur less 
frequently. Typically, concentration fluctuations scale in the form 1/√V for small system size effects (corresponding 
to 1/√N scaling, as [N] = N/V), and in the form 1/√koff + kon for slow chemical kinetic effects19.
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be large. The simulations discussed below show how 
molecular-level noise can have pronounced effects 
on gene expression, and provide insights into factors 
that contribute to fluctuations in the abundance of 
expressed protein. 

Finite-number effects and translational bursting. 
System size is an important factor contributing to sto-
chasticity in gene expression. The effects of decreas-
ing the cell volume are illustrated by the time series 
shown in FIG. 2b. These were obtained from stochastic 
and deterministic simulations for which the volume 
of the cell and the average rate of transcription were 
decreased 100-fold compared with the simulations 
in FIG. 2a. This proportional change in parameters 
does not affect the rate equations, and the average 
mRNA and protein concentrations remain the same. 
Comparison of the stochastic simulation results in 
FIGS 2a,b therefore demonstrates the effects of a smaller 
system size at fixed concentrations. In FIG. 2b, the pro-
tein concentration fluctuates with increased amplitude, 
causing significant deviations from that predicted by 

the deterministic model. This also causes a broader 
distribution of protein abundance and, therefore, 
increased population heterogeneity. 

These results highlight a fundamental relation-
ship between system size and noise50: namely that 
noise tends to increase when the size of the system is 
decreased. To understand this relationship, consider 
a protein that can move freely between the nucleus 
and cytoplasm. At equilibrium, the nuclear and 
cytoplasmic concentrations are, on average, equal. 
However, because the volume of the nucleus is less 
than that of the cytoplasm, translocation of a protein 
molecule across the nuclear membrane has a more 
significant effect on the nuclear concentration than 
on the concentration in the cytoplasm. If 10 molecules 
are present in the nucleus and 1,000 in the cytoplasm, 
the translocation of 1 molecule causes a 10% change 
in nuclear concentration, but only a 0.1% change in 
cytoplasmic concentration. This differential effect 
arises from the different number of molecules in the 
two compartments and is referred to as the ‘finite-
number effect’. In general, when N denotes average 

Figure 2 | Finite-number effects and translational bursting. a–c | Time series of protein concentrations generated from 
deterministic and stochastic simulations (blue and red curves, respectively). Histograms that show the probability that a cell 
will have a given intracellular protein concentration are also shown (right-hand panels). The parameters used yield protein 
concentrations in the µM range. The rate of promoter transitions is high (koff = kon = 10 per min). a | Low-amplitude fluctuations 
with high numbers of expressed mRNA and protein molecules (~3,000 and ~10,000, respectively) and a large cell volume 
(200 µm3). The other parameter values are sA = 50, sR = 5, sP = 0.2, δM = 0.1 and δP = 0.05 in units per min. b | Increased 
fluctuations in protein concentration are due to a decrease in the number of expressed mRNA and protein molecules (to 
~30 and ~100, respectively). The transcription rates and cell volume were decreased 100-fold compared with a (sA = 0.5 units 
per min, sR = 0.05 units per min, V = 2 µm3). c | Large fluctuations in protein abundance are due to low mRNA abundance 
(~30 molecules). Transcription rates were decreased 100-fold compared with a (sA = 0.5 units per min, sR = 0.05 units per min) 
and the translation rate was increased correspondingly (sP = 20 units per min) to keep the protein abundance at ~10,000 
molecules. The difference between b and c is a 100-fold increase in the average number of expressed proteins. Because low 
mRNA abundance is the dominant source of noise in gene expression (as described in the main text), the fluctuation amplitude 
and population distribution are almost the same in the two simulations. The ‘bar-code’ above the graph is obtained by drawing a 
vertical line at each time point where the protein concentration deviates by more than 10% from the average. d,e | The predicted 
dependencies of the coefficient of variation η, defined as the standard deviation σ over the mean N (the noise) (d), and the noise 
strength φ, defined as the variance σ2 over the mean N (e), on the average protein abundance when the transcription rate and 
translational efficiency are increased. The initial parameters are as in part b. 
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molecular abundance, a decrease in abundance results in 
a characteristic 1/√N scaling of the noise (η ~1/√N and 
η2 ~1/N). The finite-number effect is perhaps the most 
commonly recognized manifestation of molecular-level 
noise in cellular regulation.

Comparing FIGS 2a,c highlights how finite-number 
effects at the level of mRNA comprise a second impor-
tant factor contributing to gene-expression noise. In 
FIG. 2c, the rate of transcription is decreased 100-fold 
(compared with FIG. 2a) without changing the cell volume 
(in contrast to FIG. 2b). Moreover, the rate of translation is 
increased 100-fold, such that the average protein concen-
tration (and the number of expressed protein molecules) 
remains the same as in FIG. 2a. This proportional change 
in transcription and translation rates captures a ‘transla-
tional bursting’ mechanism12,20,21, in which the amplitude 
of fluctuations in protein abundance depends on the 

number of proteins produced per mRNA, referred to 
as the burst parameter21 or translational efficiency23,29,36. 
According to this mechanism21, for two genes expressed 
at the same average abundance, the one with the higher 
translational efficiency and lower mRNA abundance 
is predicted to display greater fluctuations in protein 
concentration and a broader population distribution 
than the gene with the lower translational efficiency and 
higher mRNA abundance. Because the average number 
of protein molecules and the cell volume are kept fixed, 
this increased gene-expression noise is attributable to 
increased fluctuations in mRNA abundance, causing 
increased fluctuations in the rate of protein synthesis. 

Although finite-number effects at the protein level 
do contribute to stochasticity in gene expression, it is 
generally expected that variability is more strongly 
linked to changes in the number of mRNAs than of 
protein molecules. This can be seen by comparing the 
three simulations in FIG. 2a–c. Although a 100-fold dif-
ference in the average number of mRNAs at a fixed pro-
tein abundance causes a large change in the fluctuation 
amplitude and protein distribution (compare FIGS 2a,c), 
a 100-fold difference in the average number of protein 
molecules at a fixed mRNA abundance causes only a 
minor effect (compare FIGS 2b,c). Correspondingly, as 
illustrated in FIG. 2d, varying the rate of transcription 
causes a greater change in gene-expression noise than 
varying the translational efficiency. 

Translational bursting and noise strength. The relative 
deviation from the average, measured as the stand-
ard deviation divided by the mean (η = σ /N), is the 
most direct and unambiguous measure of gene-expres-
sion noise (FIG. 2d). However, it is sometimes advanta-
geous to use a different measure, the noise strength, 
which is defined by the variance divided by the mean 
(ϕ = σ 2/N). This measure is used primarily to reveal 
trends that would otherwise be obscured by the char-
acteristic 1/√N scaling of noise arising from finite-
number effects21. For example, in FIG. 2d, varying the 
rate of transcription and the translational efficiency 
yields qualitatively identical dependencies of the noise 
on the average protein abundance. On the other hand, 
measurements of noise strength, as described below, 
might yield dependencies that differ qualitatively, 
depending on how the abundance of expressed pro-
tein is varied. For example, the translational bursting 
mechanism predicts that the noise strength should 
increase linearly with the average protein abundance 
when translational efficiency is increased, but remain 
constant when the rate of transcription is increased21 
(FIG. 2e). Because of its ability to discriminate between 
these situations, the noise-strength measure has proved 
useful as a tool to interpret experimental data. 

It is important, however, to note that increased noise 
strength does not imply that the relative variability (the 
coefficient of variation η) is also increased. This is clear 
when comparing FIGS 2d,e, which were obtained from the 
same data set using the two different noise measures. In 
fact, for two genes characterized by low and high noise-
strength measures, it can only be concluded that the 

Figure 3 | Slow promoter transitions and transcriptional bursting. a,b | Time series and 
histograms were obtained as in FIG. 2. The parameters used were as follows: sA = 50, sR = 5, 
sP = 0.2, δM = 0.1 and δP = 0.05. Parameters are given as units per min. High numbers of 
expressed mRNA and protein molecules (~3,000 and ~10,000, respectively) and a large cell 
volume (200 µm3) were used. a | A decrease in the half-life of the two promoter states from 
~4 seconds (FIG. 2) to ~1 minute (kon = koff = 0.7 per min) yields an increase in fluctuation 
amplitude that is comparable with those obtained following a 100-fold decrease in the number 
of expressed molecules. b | Promoter-transition rates that correspond to stable promoter 
states (half-life ~1 hour) yield random transitions between low and high expression states and a 
bimodal distribution in protein concentration. c | The curves show the predicted dependencies 
of the noise strength on the average protein abundance with different modes of transcriptional 
induction. The rate of transcription varies owing to changes in: (mode I) the promoter-
deactivation rate (koff) (red curve), (mode II) the promoter-activation rate (kon) (blue curve), and 
(mode III) the transcription rate from the active promoter state (sA) (green curve). No change 
is observed when the transitions are fast (yellow curve), regardless of how the average 
transcription rate is varied. d | The qualitative differences seen in c are less apparent in more 
traditional plots34 of the noise (measured as η2) against the average protein abundance (plotted 
as 1/N). Note that the average protein abundance decreases from left to right in this figure. 
Data in d and c were generated by the equation derived by Raser and O’Shea36 for the model 
in FIG. 1, with sR = 0. A general form of this equation is given by Paulsson34. Identical 
dependencies were observed in the model by Blake et al.29. 
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The fundamental unit into 
which DNA and histones are 
packaged in eukaryotic cells. 
It is the basic structural subunit 
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200 bp of DNA and an octamer 
of histone proteins.  

gene with the highest noise strength has increased vari-
ability — that is, a broader protein distribution — when 
the two genes are expressed at similar abundances.

Slow promoter kinetics and transcriptional bursting. 
As mentioned previously, in addition to a large sys-
tem size, a second requirement for a small effect of 
molecular-level noise on gene expression is to have 
fast transitions between promoter states. This is dem-
onstrated in FIG. 3a, which shows simulation results 
obtained using the same parameters as in FIG. 2a (that 
is, high molecular abundances), but with reduced 
promoter transition rates. Here, the promoter is in the 
active state for longer, allowing an increased number of 
mRNAs to be synthesized in rapid succession. The size 
of these ‘bursts’ in transcription depends on the aver-
age number of transcripts produced between promoter 
activation and deactivation (the ratio sA/koff ; see FIG. 1), 
referred to as the transcriptional efficiency 29,36.

The simulation results shown in FIG. 3b demonstrate 
that the effect of transcriptional bursting can be pro-
nounced35,41. In this case, the transition rates are so 
slow that the protein abundance (and that of mRNA) 
tracks the state of the promoter. Consequently, protein 
(and mRNA) is produced at either very high or very 
low rates, resulting in random transitions between high 
and low expression states and a bimodal distribution 
of intracellular protein concentration. Because of this 
bimodality, a snapshot of a large cell population would 
show a mixture of cells that express the protein at low 
and high levels9,10,35,41. 

Similar stochastic simulations of the effects of 
promoter transition rates have led to predictions 
about the relative importance of sources of noise 
in prokaryotic and eukaryotic gene expression. The 
previously mentioned predictions of the translational 
bursting mechanism are valid when the transitions 
between promoter states are rapid. This is consistent 
with the general view for prokaryotes that the bio-
chemical processes regulating transcription initiation 
occur frequently in comparison with synthesis and 
degradation events. Indeed, most models of prokary-
otic gene expression assume that the transition rates 
are so fast that the promoter states are always in 
steady state and the rate of transcription is constant 
BOX 1. The model in FIG. 1 therefore suggests that 
translational bursting is probably a dominant source 
of stochasticity in the process of prokaryotic gene 
expression. 

By contrast, slow transitions between promoter 
states are expected to be particularly important in 
eukaryotic gene expression, for which the presence 
of NUCLEOSOMES and the packing of DNA-nucleosome 
complexes into chromatin generally make promoters 
inaccessible to the transcriptional machinery. Transition 
between open and closed chromatin structures, corre-
sponding to active and repressed promoter states, can 
be quite slow51. In the context of the model in FIG. 1, the 
result is increased heterogeneity within a cell popula-
tion (FIG. 3a), or even stochastic all-or-nothing responses 
in single cells (FIG. 3b).

Mixed populations and bimodal population distri-
butions — which, as described above, might arise from 
slow promoter transition rates — are often observed in 
eukaryotes52–59. This has led to the proposal of two dis-
tinct modes of transcription regulation in eukaryotes60 
— a graded mode, in which all cells respond in pro-
portion to the inducing signal, and a binary mode, in 
which the inducing signal changes the probability of a 
stochastic all-or-nothing response in an individual cell. 
In the context of the model in FIG. 1, a graded response 
becomes binary when the rate of promoter transitions 
is decreased. This indicates that the experimentally 
observed graded and binary modes of transcription 
might arise from differences in transition rates between 
promoter states9,10,35,41.

Modes of transcriptional induction. Analyses of theo-
retical models29,36 predict that transcriptional burst-
ing arising from slow promoter transitions affects the 
dependence of the noise strength on the average protein 
abundance. Based on the model in FIG. 1, there are three 
possible modes of transcriptional induction, each yield-
ing a characteristic dependency of noise strength on 
abundance (FIG. 3c). In mode I, the average transcription 
rate is increased by decreasing the rate of promoter inac-
tivation. In this case, the noise strength has a maximal 
value at intermediate expression levels. In mode II, the 
average transcription rate is increased by increasing 
the rate of promoter activation. Here, noise strength 
decreases as a function of the average protein abundance. 
In mode III, the average transcription rate is increased 
by increasing the rate of transcription from the active 
promoter. In this case, the noise strength increases with 
the average protein abundance. The effect of transcrip-
tional bursting on fluctuations in protein abundance 
and on population heterogeneity is therefore predicted 
to depend sensitively on the molecular details of the 
induction and on the strength of the inducing signal. 
These theoretical results have been used in experimental 
studies to interpret how both induction and mutations 
affect the kinetics of eukaryotic promoters. 

In the following sections, we describe experimental 
approaches in prokaryotes and eukaryotes that have 
been used to test the theoretical basis of stochasticity in 
gene expression that is described above. We also discuss 
experiments showing that noise in gene expression is 
influenced, sometimes to a large degree, by factors that 
might be considered to be external to the process of 
gene expression.

Stochasticity in prokaryotic gene expression
Translational bursting in prokaryotes. The predic-
tions described above concerning the effects of 
translational bursting on noise in gene-expression 
levels indicate that noise strength is more sensitive to 
variation in translational efficiency than to the rate of 
transcription. This was validated by Ozbudak et al. in 
a study of gene-expression noise in Bacillus subtilis 23. 
Population heterogeneity was measured by expressing 
a gene encoding GFP from an inducible promoter, 
which provides a simple method of varying the rate of 
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transcription. Point mutations that affect the affinity 
of ribosome binding to the GFP-encoding mRNA were 
introduced to vary translational efficiency. In agree-
ment with the theoretical predictions described above, 
the noise strength showed a strong, positive linear 
dependence on the average protein abundance when the 
translational efficiency was varied. By contrast, changing 
the rate of transcription yielded a considerably weaker 
linear dependence. 

These results confirm the translational bursting 
hypothesis that, for genes expressed at similar levels, a 
combination of low transcription rate and high transla-
tional efficiency causes increased gene-expression noise 
compared with a combination of high transcription rate 
and low translational efficiency. This led Ozbudak and 
colleagues to speculate that the inefficient translation 

of several regulatory genes in another prokaryote, 
Escherichia coli, although it is energetically unfavour-
able, might have been selected during evolution to 
guard against the potentially detrimental effects of 
fluctuations in protein concentrations. 

Distinguishing between sources of noise. Stochasticity 
that is inherent to the biochemical process of gene 
expression, known as gene-intrinsic noise BOX 2, is 
not the only source of variability in the abundance of 
expressed molecules. Factors that influence transcrip-
tion rates — such as gene-regulatory signals and the 
abundances of polymerases and ribosomes — also 
cause variability in gene expression. Moreover, because 
of differences in gene copy number at different points 
in the cell cycle, transcription rates inevitably change as 

Box 2 | Intrinsic and extrinsic sources of gene-expression noise

Intrinsic versus extrinsic sources
In the analysis of stochastic processes, it is often beneficial to separate contributions arising from fluctuations that 
are inherent to the system of interest (intrinsic noise) from those arising from variability in factors that are 
considered to be external (extrinsic noise). In the phenomenological model of gene expression in FIG. 1, intrinsic 
noise is defined by the fluctuations generated by stochastic promoter activation, promoter deactivation, and mRNA 
and protein production and decay. Extrinsic-noise sources are defined as fluctuations and population variability in 
the rate constants associated with these events.

Context-dependent definitions of intrinsic noise 
The definition of intrinsic noise is problem-dependent, and varies from one context to another, as illustrated in part a 
in the figure. Gene-intrinsic noise refers to the variability generated by molecular-level noise in the reaction steps that 
are intrinsic to the process of gene expression. Network-intrinsic noise is generated by fluctuations and variability in 
signal transduction and includes gene-intrinsic noise in the expression of regulatory genes. Cell-intrinsic noise arises 
from gene-intrinsic noise and network-intrinsic noise, as well as fluctuations and variability in cell-specific factors, 
such as the activity of ribosomes and polymerases, metabolite concentrations, cell size, cell age and stage of the cell 
cycle. Part b in the figure shows some of the paths that can propagate and potentially amplify fluctuations and 
population variability, demonstrating the interdependence of variability at different levels of organization.

Measuring gene-intrinsic noise
Noise intrinsic to gene expression has been defined operationally as the difference in the expression of two identical 
genes from identical promoters in single cells averaged over a large cell population28,62. This definition relies on the 
assumptions that the two genes are affected identically by fluctuations in cell-specific factors and that their 
expression is perfectly correlated if these fluctuations are the only source of population heterogeneity. With these 
assumptions, the contribution of gene-intrinsic noise can be investigated in two-reporter assays (FIG. 4). These assays 
evaluate, in single cells, the difference in the abundances of two equivalent reporters, such as cyan and yellow 
fluorescent protein, expressed from identical promoters, located at equivalent chromosomal positions28.

The two-reporter assay represents a significant scientific advance as it allows measurements of the absolute 
magnitude of fluctuations generated by the biochemical reaction steps that are intrinsic to the process of gene 
expression, and allows the characterization of promoter kinetics on the basis of changes in intrinsic noise that are 
caused, for example, by mutations or gene deletions36. It does, however, have certain limitations. For example, 
contributions from extrinsic factors, such as imperfect timing in replication28 and intracellular heterogeneity122,123, 
might be measured as gene-intrinsic noise. Moreover, because increased variability in regulatory signals might 
cause cells to adapt distinct expression states, the measured population-average gene-intrinsic noise and the 
extrinsic regulatory noise might not always be independent. As an alternative, experiments have successfully used 
indirect methods that are based on single-gene reporter assays23,29,58,63,65–67,81 to measure differences in population 
variability, which, with appropriate controls, can be attributed to changes in specific processes or parameters.
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SYNONYMOUS CODONS
Codons that have different 
nucleotide triplets, but which 
encode the signal for 
incorporation of the same 
amino-acid residue during 
translation. Differences in 
synonymous codon usage can 
result in differences in 
translation rates because 
codon-specific tRNAs have 
different abundances.

cells grow and divide61. Variability arising from sources 
that are external to the biochemical process of gene 
expression is referred to as gene-extrinsic noise.

To measure the impact of both gene-intrinsic and  
gene-extrinsic noise on population heterogeneity 
directly, Elowitz et al.62 and Swain et al.28 developed a two-
reporter assay that can discriminate between the two. In 
this assay, two almost identical fluorescent proteins are 
simultaneously expressed from identical promoters in 
the same cell (FIG. 4a). In the absence of gene-intrinsic 
noise, the expression of the two reporter proteins should 
be strongly correlated (FIG. 4b). Because biochemical steps 
that are intrinsic to the expression of the two reporters 
are independent, stochasticity in these steps should be 
manifested as differences in expression levels (FIG.  4c), 
and the absolute magnitudes of gene-intrinsic and 
gene-extrinsic noise can therefore be measured.

In the study by Elowitz et al.62, E. coli strains were 
engineered to express cyan and yellow fluorescent pro-
teins from identical inducible promoters. Measurement 
of the contributions of intrinsic and extrinsic noise in 
strains with different genetic backgrounds and varying 
levels of transcriptional induction showed that both 
sources of noise contribute to variation within cell 
populations. Moreover, when the rate of transcrip-
tion was decreased, the observed dependence of the 
gene-intrinsic noise on the average protein abundance 

was found to be in agreement with the 1/√N scaling of 
the noise that is expected to arise from finite-number 
effects (FIG. 2d). As pointed out by the authors62, this 
demonstrates how low molecular abundances can 
fundamentally limit the precision of gene expression. 
These studies in B. subtilis23 and E. coli62 populations 
have therefore confirmed the long-standing theoretical 
prediction1–3,5–7 that the finite-number effect increases 
noise in prokaryotic gene expression.

Stochasticity in eukaryotic gene expression
Translational bursting in eukaryotes. The study 
described above by Ozbudak et al.23 validated the 
translational bursting hypothesis experimentally, 
therefore demonstrating that the finite-number effect 
at the level of mRNA contributes significantly to gene-
expression noise in prokaryotes. To investigate whether 
this conclusion extends to eukaryotes, Blake et al.29 
examined how altering the transcription rate and trans-
lational efficiency affects total population variability in 
the yeast Saccharomyces cerevisiae. In this study, the 
expression of GFP variants was placed under the con-
trol of a modified galactokinase 1 (GAL1) promoter, 
which could be naturally induced with galactose or 
artificially induced with anhydrotetracycline. The 
GFP variants had different translational efficiencies, 
owing to differences in SYNONYMOUS CODON usage. The 

Figure 4 | Measuring gene-intrinsic noise. a | Two almost identical genes, which encode yellow and cyan fluorescent 
proteins, are expressed from identical promoters, and are influenced identically by cell-specific factors, such as gene-regulatory 
signals. b | The abundances of the two expressed proteins are perfectly correlated when stochasticity in the biochemical steps 
that is intrinsic to the process of gene expression (gene-intrinsic noise) is absent and the effects of intracellular heterogeneity are 
negligible (left panel). A scatter plot of protein abundance that was obtained from a ‘snapshot’ of a cell population contains 
points that are only on the diagonal (right panel). c | Asynchronous protein abundances in the presence of gene-intrinsic noise 
are shown (left panel). Because the biochemical steps in the expression of the two genes are independent, gene-intrinsic 
noise causes the number of expressed proteins to differ, giving rise to a scatter plot that contains off-diagonal points (right 
panel). Evaluating the differences in expressed protein abundance within individual cells, and averaging these differences across 
a sufficiently large cell population can therefore provide a measure of the absolute magnitude of gene-intrinsic noise28,62. 
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TATA BOX
A consensus sequence within 
promoters that is enriched in 
thymine and adenine residues, 
and is generally important for 
the recruitment of the 
transcriptional machinery.

UPSTREAM ACTIVATING 
SEQUENCE
A sequence that is located 
upstream of a promoter at 
which transcriptional activators 
bind and subsequently facilitate 
the expression of downstream 
genes.

experiments and data analysis were conducted to allow 
direct comparison with the B. subtilis study23. 

In agreement with the results from B. subtilis, the 
noise strength measured in S. cerevisiae increased lin-
early with the average protein abundance when transla-
tional efficiency was altered. In fact, the data obtained 
in the S. cerevisiae study 29, with different combinations 
of transcription rates and translational efficiencies 
that yield similar expression levels, directly confirm 
the validity of the translational bursting hypothesis in 
eukaryotes. 

Transcriptional bursting in eukaryotes. In B. subtilis 23, a 
weak linear dependence of noise strength on transcrip-
tion rate was observed. By contrast, in S. cerevisiae29, 
the noise strength was found to be strongly and non-
linearly dependent on transcription rate, with noise 
strength reaching a maximum at intermediate protein 
abundances. This observed dependency is similar to 
that shown by the red curve in FIG. 3c. It was suggested 
that the most likely explanation for this effect is a com-
bination of variability in upstream signalling (network-
intrinsic noise; BOX 2) and slow transitions between 
promoter states29 (transcriptional bursting). This was 
supported by stochastic simulations, which demon-
strated that both factors might result in increased noise 
strength at intermediate protein abundances.

To investigate stochastic effects in eukaryotic gene 
expression further, Raser and O’Shea36 used a two-
reporter assay in S. cerevisiae to determine how tran-
scriptional induction and cis- or trans-acting mutations 
affect gene-intrinsic noise in expression from the PHO5 
promoter. Transcriptional induction had significant 
effects on the intrinsic-noise strength, which steadily 

decreased at increasing population-averaged expression 
levels. This dependency is consistent with that which is 
predicted to arise from transcriptional bursting when 
transcriptional induction increases the rate of promoter 
activation as described earlier (mode II; FIG. 3c).

To explore this further, Raser and O’Shea meas-
ured variability in strains that carry mutations in 
the TATA BOX of the PHO5 promoter or in its UPSTREAM 

ACTIVATING SEQUENCE (UAS). TATA box mutations are 
expected to decrease the rate of transcription from the 
active promoter, whereas UAS mutations are expected 
to decrease the rate of promoter activation by slowing 
down the recruitment of chromatin-remodelling factors. 
Consistent with the corresponding dependencies of 
noise strength on protein abundance that are predicted 
for these different modes of transcriptional induction 
(as described earlier; see FIG. 3c), TATA-box and UAS 
mutations resulted in decreased and increased intrinsic-
noise strength, respectively. The observation that induc-
tion and UAS mutations had similar effects — increased 
intrinsic-noise strength at lower population-averaged 
expression rates — indicates that slow promoter activa-
tion owing to chromatin remodelling has an important 
role in generating stochasticity in eukaryotic gene 
expression. This was further supported by observations 
in strains that lack different components of chromatin-
remodelling factors, which had increased intrinsic noise 
at decreased expression levels36.

Experimental studies of stochasticity in prokaryo-
tes and eukaryotes23,29,36,62 have therefore confirmed 
the theoretical mechanisms that are predicted by the 
model in FIG. 1. These mechanisms operate at the level of 
single genes and are intrinsic to the biochemical proc-
esses of gene expression. The direct measurements of 

Box 3 | Robustness and the architecture of genetic networks

Engineered gene networks have provided insights into how the architecture of the network influences its ability to 
function in noisy environments. For example, the two stable expression states of a bistable genetic toggle switch, 
designed from two mutually repressing genes, were observed to be stable against gene-expression noise124–127. This 
robustness to stochastic effects resulted in cells with epigenetic memory of a given expression state that could be 
maintained through successive cell generations. By contrast, the positive-feedback system implemented by 
Isaacs et al.67, and discussed in the main text, yielded mixed populations for bistable conditions, indicating that 
gene-expression noise in this case was sufficient to cause random transitions between the two expression states. This 
difference in noise robustness is probably due to a higher transition threshold in the toggle-switch network.

Two oscillatory circuits studied in Escherichia coli provide another example of the importance of network architecture 
for the functioning of gene-regulatory networks. Whereas cells that carry an oscillatory network consisting of three 
transcriptional repressors showed rapid desynchronization128, another oscillator design consisting of an activator and 
a repressor enabled dampened but synchronized oscillations across the cell population129. In circuits with the latter 
design, fluctuations in gene expression can, in theory, cause the emergence of oscillations that would not appear 
otherwise27,130. Therefore, stochasticity in gene expression might sometimes have a constructive effect, making a 
desired property, such as oscillatory gene expression, easier to obtain. 

Although it can be solved on a case-by-case basis124,127,129,131, one of the most difficult challenges in genetic network 
engineering is the design of circuits that can operate reliably despite noisy environments and stochasticity in gene 
expression. From the perspective of the genetic systems engineer, the robustness of natural cell-regulatory networks 
is as striking as it is intriguing. The design strategies used by natural gene networks to achieve robust function are 
being uncovered through investigations of model systems — such as bacterial chemotaxis132–136 — and systems-level 
approaches137–141, but are generally poorly understood. Past and future studies of noise in engineered gene circuits 
have and will aid the design of more reliable engineered networks. Perhaps more importantly, such studies will 
provide a more detailed understanding of how complex biological systems reduce the effects of, or possibly even 
exploit, the stochasticity that is inherent to gene expression. 
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gene-intrinsic and extrinsic noise36,62 have further 
demonstrated that there are factors extrinsic to the bio-
chemical processes of gene expression that contribute 
significantly to fluctuations and population heterogene-
ity in protein abundance. One such factor is variability 
in gene-regulatory signals. It is therefore also important 
to investigate gene-expression noise in the context of 
gene-regulatory networks, as we discuss below.

Stochasticity in gene networks
Genes and proteins are organized into extensive 
networks that allow cells to respond and adapt to 
their environment. The complexity of these systems 
can hinder attempts to study how the architecture 
of regulatory networks enables cells to deal with or 
take advantage of unreliable, fluctuating signals. 
Here, we focus on engineered genetic cascades29,63,64 
and synthetic gene networks that involve negative 
and positive auto-regulation65–67. Studies of these 
networks have allowed more direct investigations of 
how stochastic effects at different parts of a network 
affect expression outcomes. Further insights can be 
gained from studies of synthetic gene networks that 
are based on different design strategies; these designs 
are not discussed in detail here, but an overview is 
given in BOX 3.

Stochastic effects in gene-regulatory cascades. To 
study noise propagation, Blake et al.29 engineered a 
transcriptional cascade with two regulatory steps in 
S. cerevisiae (FIG. 5a). In this system, the expression of 

a target reporter gene depends on the activity of an 
upstream transcriptional regulator. The level of noise 
in the expression of the transcriptional regulator and 
its average activity can be controlled independently to 
study the effects of noise in a gene-regulatory cascade. 
As the level of transcriptional induction was increased, 
the population-averaged expression level was observed 
to follow a non-linear dose-response curve, with the 
greatest change occurring at intermediate levels of 
induction (FIG. 5b). Increased noise in the transcriptional 
regulatory signal increased the population heterogene-
ity in this range, but had little or no effect at high and 
low induction levels. This is perhaps intuitive, as the 
observed population-averaged dose-response curve 
(FIG. 5b) predicts that the rate of transcription should 
be most sensitive to variations in the regulatory signal 
at intermediate induction levels.

Interestingly, in the same study, a high level of 
regulatory noise gave rise to population distributions 
with distinctly separated high and low expression 
states (a binary response)29. By contrast, a low level 
of noise in the regulatory input yielded unimodal 
distributions, regardless of the induction level. This 
indicates that the binary response is directly linked 
to variability in the level of transcriptional regulatory 
signal received by the downstream promoter. Indeed, as 
illustrated in FIG. 5c, a steep dose-response curve for the 
regulatory input, coupled with large differences among 
cells in the regulatory signal, is sufficient to generate 
bimodal population distributions and all-or-nothing 
responses in single cells68. 

Figure 5 | Noise in gene networks. a | This shows a transcriptional cascade that has two regulatory steps. P1 and P2 represent 
regulatory proteins, I1 and I2 are their inducers, and S1 and S2 represent the effective activities of the regulatory proteins. b | The 
population-averaged dose response to transcriptional induction by S2 is shown. The highest signal sensitivity occurs at 
intermediate values of the input signal where the dose-response curve has the highest slope. c | Increased variability in the 
S2 signal in the region of high signal sensitivity causes a transition from a unimodal to a bimodal population distribution. The 
population histograms were obtained by simulations of the model in FIG. 1, with the noisy signal S2 having a non-linear effect on 
the rate of promoter deactivation. Similar effects are observed experimentally29. d | An auto-regulatory single-gene network is 
shown. e | The effects of varying the strength of the positive-feedback loop in d are shown. A unimodal population distribution 
that is obtained in the presence of weak feedback becomes bimodal when the strength of the feedback is increased. The 
histograms were obtained from simulations of the model in FIG. 1, with the gene product P1 acting as a noisy signal that affects 
the rate of promoter activation. Similar effects have been observed experimentally66,67. 
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P53MDM2 FEEDBACK LOOP
One of the best-studied 
negative-feedback regulatory 
networks in human cells. The 
tumour-suppressor p53 
activates the synthesis of 
Mdm2, which in turn targets 
p53 for degradation.

SEGMENTAL CLOCK
The gene-regulatory network 
that allows the periodic and 
population-synchronous 
expression of genes in the 
primitive streak and posterior 
presomitic mesoderm of 
developing vertebrates. This 
allows the formation of a 
periodic pattern of gene 
expression in the anterior 
presomitic mesoderm.

Recent studies have provided further insights into the 
propagation of gene-expression noise in transcriptional 
cascades. Hoosangi et al.63 measured variability in E. coli 
populations that carry cascades engineered with one, two 
or three regulatory steps. High population hetero geneity 
was observed in all three cascades at intermediate levels 
of transcriptional induction, with each additional regu-
latory step roughly doubling the expression noise. Little 
or no change was observed at high and low induction 
levels, regardless of the cascade length, consistent with 
observations in S. cerevisiae29. This was also found by 
Pedraza et al.64 in a study of a two-step transcriptional 
cascade that involved an important difference from 
other studies of this type of system29,63 — variability at 
each regulatory step was measured simultaneously in 
single cells, allowing the separation of the gene-intrinsic 
and regulatory noise that was transmitted through the 
cascade. It was found that the latter, which is defined 
as being extrinsic to the biochemical processes of gene 
expression BOX 2, was the dominant source of noise in 
the expression of the target gene.

Hoosangi et al.63 also showed that the three-step 
cascade yields a more non-linear dose-response 
curve than the one-step cascade, allowing a more 
precise on–off switching behaviour. However, this 
improved steady-state response characteristic comes 
at the price of a more asynchronous initial population 
response. This was attributed to each additional step 
in the cascade adding variability to the response time 
of individual cells63. This intriguing finding shows 
experimentally that there is a trade-off between cas-
cade length and synchrony. Together with the observed 
increase in noise for longer cascades, this indicates that 
signals generated by short cascades generally are less 
noisy than those generated by long cascades.

As well as cascade length, it is also important to 
consider the influence of negative- and positive-
feedback loops on the effects of gene-expression noise. 

Endogenous gene networks frequently rely on such feed-
back regulation. The effects of noise in the presence of 
feedback loops have been studied experimentally using 
synthetic networks as described below.

Gene networks with negative feedback. It is a com-
monly held idea that negative feedback provides a 
noise-reduction mechanism21,32,34,40,43,65,69,70. To test this 
in the context of gene regulation, Becskei and Serrano65 
engineered a single-gene negative-feedback system in 
E. coli. They compared the variability generated by this 
regulatory network with that generated in the absence of 
feedback control. This comparison revealed a decrease 
in gene-expression variability in the feedback network, 
therefore confirming that negative auto-regulation 
provides a noise-reduction mechanism.

Negative feedback might also minimize the effects 
of fluctuations on downstream processes. In general, 
when fluctuations in a regulatory signal occur at a 
high frequency, a slower downstream process can only 
‘feel’ a time-average signal, effectively functioning as a 
low-pass filter. It has been shown theoretically32 that 
negative feedback shifts the fluctuation frequency to 
higher values, thereby potentially minimizing its effects 
on slower processes. This prediction awaits further 
experimentation.

Despite the stabilizing effects described above, 
negative feedback can also have a destabilizing effect 
and so result in dampened or sustained oscillations 
if it involves a time delay71. Examples of delay-driven 
genetic oscillations include the DNA-damage response 
that is mediated by the P53MDM2 FEEDBACK LOOP72,73 and 
the SEGMENTALCLOCK oscillator that functions in early 
vertebrate development74–77. Stochastic simulations 
indicate that oscillations in the latter are sensitive to 
molecular-level noise, and that noise reduction by 
cell–cell communication is required to achieve the 
precision that is necessary for normal development76. 

Box 4 | Noise minimization as an evolvable trait

The translational bursting hypothesis discussed in the main text proposes that organisms could evolve to minimize 
stochasticity in gene expression by using a high transcription rate and low translational efficiency if there was a 
selective pressure for noise reduction. Motivated by results in Saccharomyces cerevisiae29, which showed decreased 
noise in the protein levels produced from genes with a high transcription rate and low translational efficiency, 
Fraser et al.82 tested the hypothesis that noise in gene expression could be an evolvable trait. They used data from 
high-throughput experiments to estimate the rates of transcription and translation for groups of proteins with 
similar abundances in S. cerevisiae. It was proposed that essential genes, for which deletions are lethal to the organism, 
should be particularly sensitive to random perturbations in protein abundance. This is because survival could be 
compromised by large fluctuations that bring protein concentrations to dangerously low levels, thereby transiently 
mimicking the effect of genetic deletion. Fraser et al. also proposed that genes encoding components of multi-protein 
complexes should show a similar sensitivity to fluctuations, because fluctuations in any one of the subunits could 
compromise the integrity of the complex, wasting the energy invested in the synthesis of its components.

Indeed, in 14 of the 15 rates of protein production that were tested, essential genes showed a statistically significant 
bias towards high transcription and low translation. Similar results were found for genes that encode components 
of multi-protein complexes82. Taken together, these findings provide strong support for the hypothesis that noise in 
gene expression is an important biological variable that might be subject to natural selection. Moreover, there are 
mechanisms that operate at the level of gene and cell-regulatory control systems that might have evolved specifically to 
minimize the impact of intra- and extracellular fluctuations and noisy signal transduction. Such mechanisms, which 
include feedback regulation and redundancy of regulatory pathways, have recently been reviewed by Stelling et al.136 
and Kitano140 in the broader context of biological robustness as a property of complex, evolvable systems.
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LYSOGENIC/LYTIC DECISION 
PATHWAY
The gene-regulatory network 
that allows bacteriophage-λ to 
switch between a dormant 
(lysogenic) state, in which 
phage DNA is integrated into 
the chromosome of the host 
cell, and an active (lytic) state, 
in which the cellular machinery 
of the host is used to rapidly 
produce phage progeny.

EPIGENETIC MEMORY
The ability to transfer 
information through successive 
generations without 
modification of the DNA 
sequence. Common 
mechanisms of epigenetic 
inheritance are covalent 
modifications of DNA and 
altered chromatin structure that 
affects gene expression.

Gene networks with positive feedback. Autocatalytic 
reactions that result in positive feedback generally 
amplify fluctuations and population heterogene-
ity78,79. In a recent investigation, Isaacs et al.67 recon-
structed a single-gene autocatalytic network from the 
LYSOGENIC/LYTIC DECISION PATHWAY of bacteriophage-λ to 
study the effects of varying the strength of feedback 
activation on population heterogeneity. A hallmark of 
positive-feedback regulation is bistability, which gives 
rise to distinct cellular states with high and low expres-
sion levels. Stochasticity in gene expression can cause 
random transitions between the two states, yielding 
bimodal population distributions16,66,67,80,81. Indeed, 
Isaacs et al.67 observed bimodal population distribu-
tions in protein abundance, and showed experimen-
tally that the population distribution can change from 
being bimodal to unimodal when the strength of the 
feedback is varied. Similar results were obtained by 
Besckei et al.66 in a study of an artificial single-gene 
autocatalytic system in S. cerevisiae, and these find-
ings are captured by stochastic simulations of a simple 
positive-feedback network (FIGS 5d,e). 

Positive-feedback regulation therefore provides 
yet another mechanism for generating phenotypically 
distinct subpopulations from cells that have identical 
genotypes66,67. Such mechanisms can have pronounced 
phenotypic consequences that might be involved both 
in disease and in normal cellular processes such as 
differentiation.

Biological significance of stochasticity
Stochasticity in gene expression is generally believed 
to be detrimental to cell function, because fluctuations 
in protein levels can corrupt the quality of intracellular 
signals, negatively affecting cellular regulation. One 
possible benefit of randomness, however, is that it can 
provide a mechanism for phenotypic and cell-type 
diversification. It is therefore interesting to consider 
the cases in which increased or decreased noise can be 
advantageous, and whether an evolutionary advantage 
is provided that would subject these processes to natu-
ral selection. A recent study by Fraser et al.82 (discussed 
in BOX 4) provides strong support for the hypothesis 
that gene-intrinsic noise is subject to natural selection. 
Here, we focus on potentially beneficial roles of sto-
chasticity in gene expression, and possible implications 
for development and disease.

Benefits of stochasticity in microorganisms. There are 
several examples in which stochasticity in gene expres-
sion has been proposed as a useful mechanism for 
generating phenotypic heterogeneity12,23,25,70,83–90. This 
is expected to be particularly beneficial to microbial 
cells that need to adapt efficiently to sudden changes 
in environmental conditions85,86. Fluctuations in gene 
expression provide a mechanism for ‘sampling’ distinct 
physiological states, and could therefore increase the 
probability of survival during times of stress, without 
the need for genetic mutation. These intuitive ideas 
were examined in a recent theoretical investigation 
that considered the response of a cell population that 

stochastically transitions between distinct phenotypic 
states in a randomly changing environment86. This 
study concluded that in a fluctuating environment, a 
heterogeneous bacterial population of isogenic cells 
(for example, created as a result of stochastic gene 
expression) might achieve faster growth rates than 
a homogeneous population, provided that the time 
taken to respond to sudden changes in environmental 
conditions is sufficiently slow.

Switching between phenotypic states with differ-
ent growth rates might be an important factor in the 
phenomenon of persistent bacterial infections after 
treatment with antibiotics84,88. Although most of the 
population is rapidly killed by the treatment, a small 
genetically identical subset of dormant ‘persistor’ cells 
can survive an extended period of exposure. When the 
drug treatment is removed, the surviving persistors 
randomly transition out of the dormant state, causing 
the infection to reemerge. Although it remains to be 
demonstrated that stochasticity in gene expression is 
involved in switching to and from the physiological 
states associated with the persistor phenotype90, ran-
dom variation in intracellular factors has been pro-
posed as a likely source of physiological diversification 
in these populations84,87.

Stochastic transitions between distinct phenotypic 
states have also been observed in S. cerevisiae. A recent 
paper by Acar et al.81 presented a comprehensive anal-
ysis of the role of three feedback-control loops, two 
positive and one negative, in the S. cerevisiae galac-
tose-utilization network. The primary purpose of the 
network is to increase the uptake and metabolism of 
galactose. Because the negative-feedback loop down-
regulates these processes, its presence seems counter-
productive. A possible functional role of the negative 
feedback, and therefore an explanation for the design 
of the regulatory network, is revealed when cellular 
regulation is considered in a stochastic framework. 
In agreement with the findings obtained using engi-
neered networks, Acar et al.81 found that the positive-
feedback loops are important for the establishment 
and separation of two distinct expression states. In 
the absence of negative feedback, these states were 
found to be highly stable and to endow cells (and 
their progeny) with long-term EPIGENETIC MEMORY of 
past galactose-consumption states. Negative feedback 
reduces this memory by increasing the rate at which 
cells randomly switch between different phenotypic 
states that are associated with different expression 
of the galactose-utilization genes. As a result, the 
biological function of negative feedback might be 
to prevent cells from being trapped in sub-optimal 
phenotypic states.

Stochasticity in development and disease. There has 
also been speculation that stochasticity has a construc-
tive role in development and cellular differentiation 
in higher organisms51,57,91–101. For example, during 
Drosophila melanogaster development, stochastic fluc-
tuations in the turnover of two proteins, Notch and 
Delta, might underlie the random emergence of neural 
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HAPLOINSUFFICIENCY
The inactivation of one of two 
alleles in diploid cells to 
produce a heterozygote that is 
insufficient to assure normal 
function.

DENDRITES
Short, tree-like extensions that 
are features of many neurons 
and allow the transmittance of 
nerve impulses between cells. 

OPTICAL WELL ARRAY
An emerging technology for 
temporal single-cell 
fluorescence measurements. 
Each cell is contained within a 
well etched into the tip of a 
single optical fibre, with 
thousands of such fibres 
arranged in an array. This 
allows simultaneous 
measurements across large cell 
populations.

precursor cells from an initial homogenous cell popu-
lation54. Differentiation in mammalian haematopoietic 
stem cells57,93,98 and during Caenorhabditis elegans92 and 
Xenopus laevis99 development has also been linked to 
similar mechanisms. In these examples, stochasticity 
again establishes an initial population heterogeneity 
that allows the selection and propagation of cell-type-
specific gene expression and, eventually, differentiation 
from an initially homogenous cell population. 

Investigations of other epigenetic factors102,103 are 
uncovering other phenomena that might be linked 
to stochastic gene expression. Mechanisms such as 
DNA methylation104,105 and chromatin-structure 
alterations106,107 can modify transcriptional activity in 
a stochastic manner, both in single cells and across 
populations. Transcriptional control in eukaryotes can 
involve silencing mechanisms, such as the formation of 
repressed chromatin states (heterochromatin) and DNA 
methylation, which enable the stable transmittance of 
functional states in cell lineages and prevent low-level 
basal expression of genes108–110. Because heterochroma-
tin might be better viewed as a dynamic rather than a 
static structure51,111–113, slow fluctuations in chromatin 
states might lead to variability in gene expression114,115. 

Stochasticity in gene expression might also be 
involved in disease, particularly in the context of diseases 
that arise from transcription-factor HAPLOINSUFFICIENCY116, 
in which one allele is non-functional or inactivated117–120. 
Elaborating on previous studies9,10, Cook et al.117 used 
stochastic simulations of a model of gene expression 
with slow promoter transitions (transcriptional burst-
ing) to show that diploid cells have a higher probability 
than haploid cells of maintaining the abundance of an 
expressed gene product above a low threshold value. 
This led the authors to propose that haploinsufficiency 
might increase the lifetime susceptibility for disease 
by increasing the probability, at a given time, that 
expression of an essential factor drops below a cru-
cial threshold, causing the onset of disease. Although 
such events would occur only rarely, the probability 
would gradually accumulate, making the onset of 
disease more likely later in the life of the organism.

Following this study 117, it was confirmed experi-
mentally 119 that cells that are haploinsufficient for 
the tumour-suppressor gene neurofibromatosis 
type 1 (NF1) are associated with increased population 

heterogeneity. This was measured by increased popu-
lation variation in the number of DENDRITES. However, 
a direct link between increased noise and haploin-
sufficiency syndromes remains to be determined. 
Further investigations of epigenetic mechanisms in 
development and disease are likely to uncover other 
cases in which stochasticity in gene expression is 
relevant.

Future directions
The past few years have seen tremendous progress in 
our understanding of stochasticity in gene expression, 
and it is likely that the rapid pace within this field will 
continue. To facilitate further advancements, however, 
several technological limitations must be addressed. For 
example, our ability to measure the random synthesis 
and decay of single molecules in single cells across a 
sufficiently large cell population is limited. Recent tech-
nological advances towards this goal include the simulta-
neous, real-time measurement of single-cell fluorescence 
and gene-expression noise using OPTICAL WELL ARRAYS121 
and time-lapse microscopy61. The latter was recently 
employed by Rosenfeld et al.61 to measure variability in 
single-cell transcriptional input–output relationships 
across cell populations and fluctuations in single-cell 
expression rates. Further developments in fluorescence 
techniques and high-throughput microscopy might also 
open up the possibility of studying the spatial effects of 
stochastic fluctuations in gene expression.

As noted above, most of the experimental studies on 
gene networks have so far focused on relatively simple 
artificial networks. There is a need to develop experi-
mental and data-analysis techniques to allow the study 
of stochasticity in more complex regulatory systems, 
particularly endogenous gene networks. As demon-
strated in the study by Acar et al.81, a comprehensive 
understanding of design strategies used by endogenous 
transcriptional regulatory programmes might require 
a stochastic perspective. We have barely scratched the 
surface of this intriguing topic, and there is a clear 
need to address in greater detail how gene expression 
responds to fluctuations in signal transduction, how 
gene-expression noise is transmitted through regula-
tory circuits and control loops, and how the architec-
ture of regulatory networks allows cells to deal with or 
take advantage of unreliable, fluctuating signals. 
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